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Topological and spatial aspects of the hydration of solutes of extreme solvation entropy
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The hydration of charged Lennard-Jones spheres by simple point charge water is considered. Molecular
dynamics and expanded ensemble simulations were used to compare the hydration structures surrounding
solutes with extreme solvation entropy. The variations in the solvation entropy were analyzed in terms of
changes in the spatial and topological structure of the hydration shells. The solvation entropy was found to be
maximal for solutes that can replace water molecules in the hydrogen-bond network. Further, using a
Kirkwood-type factorization, the solvation entropy was expanded as a sum over the péidy distribution
functions. The two-body solute-water contribution to the solvation entropy was found to exceed the full
solvation entropy for solutes with low charge, whereas the converse is true for the other solutes. This is
consistent with the idea that water-water correlations are enhanced by solvation of, for example, noble gases,
whereas they are disrupted by solvation of ions. Further, the orientational and radial parts of the two-body
solute-water entropy were calculated as functions of the charge of the solute. The orientational part has a single
maximum, whereas the radial part maintains the bimodal form of the full solvation entropy.
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[. INTRODUCTION tions to the solvation entropy are considered in Sec. V, and
the dynamics of the exchange of water molecules betweenthe
Simple solutes such as noble gases and atomic ions ag®lvation shells and the bulk is briefly considered in Sec. VI.
hydrated differently depending gamong other thingsheir ~ Section VII concludes the paper.
size and charggl-3]. A large number of simulations have
been carried out in order to study various aspects of the Il. SIMULATIONS AND MODEL
hydration of solutes of this typgel—13. In these simulations, The i e f K h vati .
a plentitude of different potential models of varying com- e incentive for our work was the solvation entropies
plexity have been used to represent the water-water, wateF—alICLIIated by Lynden-Bell and Rasal_EA]. Our simulations .
solute, and solute-solute interactiofs-9,14,15. Recently, were therefore set up to resemble theirs as closely as possible

Lynden-Bell and Rasaia#] carried out expanded ensemble With the following two exceptiong: Lynden-Bell and Rasaiah
simulations where the size and charge of the solutes Wer%lmulated the solute together with 63 water molecules using
varied continuously. This enabled them to move smoothly
between different types of hydration, and to identify solutes
corresponding to extrema in the solvation entropy; see Fig. 1.

With the present paper we extend their analysis of the
hydration structures surrounding these extreme solutes in
two directions: first, we look at the angular structure of the
hydration shells and, second, we look at changes in the to-
pology of the hydrogen-bond network. A clear picture of the
relation between changes in the solvation entropy, on the one
hand, and changes in the solvation structure, on the other
hand, is obtained by comparing the hydration of these ex-
treme solutes. Further, using a Kirkwood-tyi®] factoriza-
tion of the N-particle distribution function, we have ex-
panded the solvation entropy in a sum over the partial
n-particle distribution functiong17,1§. This allows us to
interpret the solvation entropy in terms of contributions from
different types of spatial correlations.

The paper is arranged as follows: In Sec. Il we describe —45 . . .
our simulation model, and consider to what extent it mimics -1 -05 0 0.5 1
solvation at infinite dilution. In Secs. Ill and 1V, the spatial g (in units of e)

and topological structures of the hydration shells are ana- FG. 1. The solvation entropS in units of Boltzmann's con-
lyzed. Contributions from different types of spatial correla- stantk for solutes of different charge: O denotes our expanded
ensemble datay Lynden-Bell and Rasaiah’s dafd], and[J the
two-body solute-water contributioBZ) to AS [cf. Eq. (128 and
* Author to whom correspondance should be addressed. ElectroniEable VI]. The error bars indicate one standard deviation. The er-
address: dan@physc.su.se rors in S&) are discussed in Sec. V.

AS (in units of k)
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TABLE I. Different energiesqg denotes the charge of the soluig,, the total potential energy of the
system,Eg,, the contribution from the solute-water interactions, &g, the contribution from the water-
water interactionsAF is the solvation free energy relative to tige=0 solute(i.e., AF=F,—F). All
energies are in kJ/mdE,,; andE,,, are per moleculéhere are 256 molecules in each syskehe estimated
standard deviation is either less than one unit in the last digit or given within the parentgsasd E,,,
only contain contributions from pairs separated by less thi@n whereL is the side length of the simulation
cell.[The energy per molecule in the pure water simulation #6.65 kJ/molthere are 255 molecules in the

system].
a(e)
-1.0 -05 -03 0.0 +0.2 +0.5 +1.0
AF —-592.8(5) —142.0(3) —48.3(2) 0 —2.65(7) —46.8(2) —251.5(3)
Eiot —49.41 —47.16 —46.68 —46.49 —46.52 —46.76 —47.90
Eww —47.15 —48.62 —48.92 —49.29 —49.27 —48.84 —47.87
E,,  —1180(4) —302(2) —101(1) -3.83(2) —20.0(5) —138(2) —617(3)

face centered cubi¢fcc) boundary conditiongthat is, the trema are the same, but the differences between the maxima
simulation cell subjected to periodic boundary conditionsand the minimum are smaller. The estimated standard devia-
was a rhombic dodecahedpoiVe have simulated the solute tion of the change in the solvation entropy ranges fronk 0.5
together with 255 water molecules using simple culsio  to 2k, depending on the charge of the solisee Fig. L
boundary conditions. Note that we have only calculated the difference in the sol-
We have carried out seven molecular dynamics simulavation entropy between thg=0 and the other solutes. We
tions of simple charged Lennard-Jones solutes surrounded Ihave also calculated the solvation free energy; see Table I.
rigid simple point chargéSPC/B water molecule$19]. The Our expanded ensemble consisted of 21 canonical sys-
simulations differed only in that the chargeof the solute tems differing only in that the charge of the solute was varied
was varied. Solutes of chargg=—1,—0.5-0.3,0;+0.2, between—1 and+1 in steps of 0.1. The expanded system
+0.5, and+1 (in units of the electron charge) were se- was simulated using a combined Monte C4MC) and mo-
lected, since they correspond to extrema and other interestirigcular dynamic§MD) approach 25,26. Briefly, the transi-
points on the solvation entropy curve; see Fig. 1. We haveions between the subensembles were done using a Metropo-
also simulated a pure water system consisting of 255 mollis MC algorithm, and within the subensembles ordinary MD
ecules. steps were taken. A biasing potential was used to ensure that
The electrostatic part of the interaction potential wasefficient acceptance ratios were obtained for the transitions
evaluated using Ewald summation; see below. The Lennardsetween the subensembles. In totalX41%° transitions were
Jones part of the potential was determined by the parametersade between the subensembles, ard @ MD steps were
0=2.586 A ande=0.4184 kJ/mol for the solute, and  taken within the subensembles. The MD steps were 2 fs
=3.166 A ande=0.6502 kJ/mol for the SPC/E water. The long. The density, temperature, and other simulation param-
mixed potential terms were calculated using the Lorentzeters were the same as for the MD simulations described
Berthelot combination rules. The mass of the solute wasbove.
22.9898 g/mol. As Lynden-Bell and Rasaiah pointed out, In order to compare the hydration structures that we ob-
these are reasonable potential parameters for simulation ¢din for our sc system with those that Lynden-Bell and Ra-
sodium ions in water. saiah obtained for their smaller fcc system; we have calcu-
The simulations were carried out in the canonical endated gso(r), that is the radial distribution functions of
semble atT=298.15 K andp=1.00868 g/cm. The p se- oxygen atoms surrounding the solusee Fig. 2, and the
lected corresponds to a simulation cell with a side lerigth average charge density surrounding the solute. On compar-
=19.6611 A. A Nose-Hoover thermostg0] with a relax-  ing these distributions with those obtained by Lynden-Bell
ation time of 30 fs was used to maintain the temperature anednd Rasaiah, we find no significant differences.
the time step was two femtoseconds. The Shake algorithm As all solutes that we simulatexcept ongare charged, a
[21] was used to keep the bond lengths fixed. Each simuladniform continuum charge density of opposite sign has been
tion consisted of a 200-ps-long equilibration run followed byintroduced in order to maintain a net charge of zero in the
a 2-ns-long production run. The simulations were performegimulation cell. This continuum need not be explicitly ac-
using the simulation packagepyNAmIx [22]. The simula- counted for when calculating the forces, since it only con-
tion of the pure water system was set up in the same way dsibutes an extra constant term to the electrostatic part of the
the other(note thatL was kept at 19.6611 A, whereas the potential energy,
density was adjusted accordingly
Lynden-Bell and Rasaiahigl] expanded ensemble simu-
lations show that the solvation entropy varies bimodally with U= E qiq(ri—r;)
the solute’s charge. We have carried out an expanded en- <)
semble simulation to see if the solvation entropy varies bi-
modally with the charge also for our larger system. Figure 1 _ _4i4; + g E 2_ ng, (1)

shows that this is the case. Further, the locations of the ex- i<J,intra |ri_rj| T 2Vk?
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I ] FIG. 3. The absolute difference between the electric field sur-
\! | rounding a point charge in a simple cubic Wigner cry&ial and
| ] the electric field surrounding an isolated point chagg. For each
1t distancer from the solute, the maximal difference between the elec-
tric fields, the maximal isotropic difference, and the maximal aniso-
tropic difference are plotted. Formally, these differences are given
by max,-|AE|, where AE=AEy, AEis,, and AEyyiso, respec-
tively; and where AE,=Es.—E.,, AEgs,=€(&-AEy), and

AE s AEoi— AE;s,- & denotes the radial unit vector.

lation R- G=n for some integen. V denotes the volume of

FIG. 2. Radial distribution functiong(r) of oxygen atoms sur- the unit cell,  is an arbitrary positive Constaﬁtegu.latlng
rounding the solute(a) Distributions for solutes of chargg=—1  the rate of convergence of the two parts(2f], andqj is the
(solid line), g=+1 (dashed ling andq=—0.5 (dotted ling. (b) total charge of the continuum. Note that the three first terms
Distributions for solutes of chargg=—0.3 (solid line and g  iN EQ. (1) are equal to the expression derived by de Leeuw
= +0.5 (dashed ling (c) Distributions for solutes of chargg=0 et al. [23] for a spherical cluster of cells minus the dipole
(solid line) and q=+0.2 (dashed ling The maximum value of term. Physically, the neglect of the dipole term amounts to
g(r) for theq=—1 solute is 12.4. Compare Fig. 5 in R§4]. placing the spherical cluster inside a perfect condugtior

foil boundary conditions As the dipole term is the only
where nonperiodic part of the potential, it is clear that the shape of
the cluster no longer is relevant when tinfoil boundary con-
2 erfo(x|r +R|) ditions are applied. The fourth term is the contribution from
R [r+R] the continuum; see for example Appendix A in Rgf4].
In order to calculate the solvation energy of the solute, it
) w2 G? is necessary to account for the cohesive energy associated
p(ZmGr— 2 ) (2)  with the formation of a simple cubic Wigner lattidd,6]

K consisting of the solute and a uniform neutralizing con-
tinuum. The cohesive energy associated with the Wigner lat-
tice can be obtained by evaluating Ed) for a single point

1 ;{ 7_rsz) 25 charge.Ug then sums to- qﬁ/(ZL) X 2.837297 479 48.

p(r)=

1 1
+o > ——ex
\ G;O G2

. One objective of our simulations is to learn something
\/; about the solvation of ions at infinite dilution. It is therefore
) interesting to consider the differences between the electric

_ . . . field surrounding a point charge in a simple cubic Wigner
Above, g; denotes the size, ang the position of theith crystal E5., and the electric field surrounding an isolated

charge. The first summation in E(.) is carried out over all . . . . .
charge pairs, whereas the second is only carried out 0Veoromt chargeE.,. As the maximal relative difference in the

those located in the same molecufedenotes the real space electric field at a given distanaefrom the solute, that is
lattice vectors ands the reciprocal. Since we consider a max|Esc— Ecdl/|Ecd, (4)
simple cubic latticeR takes the value&n, wheren is an Ir|=r

arbitrary integer triplet and is the side length of the simu-

lation cell. TheG’s have been normalized to satisfy the re-is less than 0.1 for distances up to than 5.8tat is 0.21),

K2
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we expect the electric field sensed by the water molecules in

this region to be sufficiently similar to that generated by a

single point charge at infinite dilution. By sufficiently similar

we mean that the structure and dynamics of the water mol-

ecules in this region are not significantly influenced by the G
differences betweerk,. and E.,. At larger distances r(
>0.27L), the relative difference increases. However, the o ) _
typical electric field sensed by a water molecule from its FIG- 4. Definition of cos) and ¢. cosé is the cosine of the
nearest neighbors is about 6(147760L2), to be compared angle between the dipole mom’ent of the water moleduésd the

with |AE|, which is less than 43/(47760L2) everywhere in yector from the water molecule’s oxygen atom to the solute, ¢

the simulation cell for a solute of charge=1; see Fig. 3. is the angle between the plane spanned b_y the water molecule and
Further, the water molecules in the first solvation shellthe plane spanned by tiieandr o vectors minusr/2. Lete denote
screen the solute’s charge to some extent. Thus we do nd) unit vect)gr; then we formally have c6s-&-€os and sing=(e,
expectAE to induce any significant structural or dynamical Cog) - (B ).

changes for>0.27..

solutes with charges 0 antl0.2, the angular distributions
are considerably flatter, the global maxima are 2.5 and 2.7,
respectively. As the charge increases further+6.5 and
+1, the water dipoles are forced to align themselves with the
We have calculated the solute-oxygen and soluteeentral electric field. For the-0.5 solute, the maximum is
hydrogen radial distribution functiongsee Fig. 2 for the 4.2, and it is located at c@s=—0.6 and¢=0; for the +1
solute-oxygen distributions From these distributions we solute, the maximum is 9.9, and it is located at @es-1
have also calculated the charge distribution surrounding thand#=0. It is clear that the closer the water molecule aligns
solute. As has already been mentioned in Sec. I, these dists dipole to the central electric field, the more freedom it
tributions do not differ significantly from those previously gains for rotation around its dipole axis.
obtained by Lynden-Bell and Rasaifd. If we know the most probable orientation of a water mol-
In order to obtain a clearer picture of the hydration struc-ecule in the first solvation shell, then we also know the most
ture, we have looked at the orientation of water molecules aprobable position of the solute relative to the water molecule.
different distances from the solute. For each distancegthe = Taking this point of view, one may notice that the
angular distribution functiora(r, 6,¢) has been calculated =—0.3 and+ 0.5 solutes both coordinate tetrahedrally rela-
(6 and ¢ are defined in Fig. ¥ These distributions have tive to the water molecule. Thus the solutes associated with
been normalized to 4, that is the surface of the unit sphere. maxima in the solvation entropy are precisely those that can
Thus, if all orientations were equally probable, the distribu-“fit” into the hydrogen-bond network(The g=—0.5 and
tion function would be uniformly equal to 1. The distribution —1 solutes have the correct orientation, but their distance to
functions describing the orientation of the water molecules inthe water molecule is less than 2.6 A; see the distances in
the first solvation shell are shown in Fig. 5. Table V). From this point of view it is also easier to inter-
Considering the negatively charged solutes first, we expret theq=0 and+ 0.2 distributions: There is a high prob-
pect the water molecules in the first hydration shell to bondhbility of finding these solutes in the leftover, that is, the
via one of their protons to the solute. The maxima at&os nontetrahedral, positions. Integrationgfg shows that there
=0.6 and¢==/2 confirm this. As the solute’s charge in- are about four closest coordinated water molecules surround-
creases from-1 to — 0.3, the water molecules gain orienta- ing theq=—0.3 and+ 0.5 solutes. Integration d(r, 8, ¢)
tional freedom: the angular distribution broadens signifi-shows that about two of these four water molecules coordi-
cantly, and its maximum value decreases from 111 to 21. Fafiate the solute tetrahedrally. The remaining two water mol-

IIl. SPATIAL ARRANGEMENT
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FIG. 5. Angular distribution functiona(r, 6, #) describing the orientation of the water molecules in the first solvation &hell the
0.2-A-thick spherical shell centered at the maximumay ., Of the solute-oxygen radial distribution functiohe distributions have been
normalized to 4r. Thus, if all orientations were equally probable, the distribution function would be uniformly equal to 4 acakp are
defined in Fig. 4. Because of the water molecule’s symmetry osly6< /2 need to be considered. For the negatively charged solutes,

a(r,,¢) is less than 1 whew< 7/4 or cos#<0.
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(a) q=-1.0 (b) q=0.5

(d) q=+1.0

FIG. 6. The first solvation shell surrounding solutes of charge-1, —0.5, 0, and+1. The isodensity surfaces enclose regions with
high probabilities of finding the center of mass of a water molecule. The isodensity surfaces surroundisg-the- 0.5, and+ 1 solutes
correspond to a center of mass density equal to eight times the bulk density. The isodensity surfaces surroundidgthate correspond
to four times the bulk density, and the rifigudius 2.5 A) encircling the z axis lies in tae=2 A plane. The marks on the axes are 1 A apart.
See the text for the definition of the coordinate systems.

ecules coordinate the solute roughly as if it was unchargediistance from the solute { is the closest and letr denote
The angular structure of the second solvation shell is, ashe position of the solute. Further, let =r; wherer; is

expected, less pronounced than that of the fsee the dis-  selected among,, 3, andr, according to the criterion that
cussion of the orientational contribution to the solvation en-(r,—r)-(r;—rJ)| should be minimal. The coordinate axes
tropy in Sec. V. are then defined by
The coordination of water molecules around an ion de-
pends on, among other things, the sign and size of its charge. ri—rq
It is clear from Fig. 2 that thg=*1 and—0.5 solutes are efm,
surrounded by well defined first solvation shells. Integration Loos
over these shells to the first minima gives coordination hum-
bers of 5.9 for theg=*=1 solutes and 4.0 for thg=—0.5 e= L=l (5b)
solute. This indicates that thg=*1 solutes are octahe- Iri—ri-gl’
drally coordinated, whereas theg= —0.5 solute is tetrahe-
drally coordinated. We have looked further into how the wa- e=6/Xeg,. (50
ter molecules are coordinated around the solutes using a
local coordinate system attached to the molecules in the firgh this coordinate system, the distribution of the mass centers
solvation shell. of the water molecules has been calculated; see Figs-6
Letrq, ry, rg, andr, denote the positions of the four 6(d). When investigating these distributions, the following
closest coordinated molecules, ordered according to thepicture of the coordination of water emerges: The solutes

(5a)
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v. TABLE Il. Deviations from octahedral and tetrahedral symme-
o try as quantified by angular and center of mé&ssm) deviations.
B Aa, AB, andAy are the rms deviations of the angles defined in
Fig. 7.1 andr . denote the average distance to the four and six
closest water molecules, respectivalyanda measure how well an
octahedron(or tetrahedroncan be fitted to the com points of the
FIG. 7. The anglesr, B, andy used to estimate the deviations water molecules in the first coordination shell by rotation; see the
from octahedral and tetrahedral symmetry are indicated in the figtext. The estimated standard deviation is less than one unit in the
ure. Note that there are a number of angles equivalent to these thiist digit in all cases.
have been marked.

a(e)

with chargesg= =1 are both, as expected, octahedrally co- 10 -05 -03 00 402 405 +10

ordinated see Figs. @) and d)]. The octahedral coordina-
tion is the most pronounced for the negatively charged sol-aA o 018 044 046 048 048 045 0232
ute: The six maxima surrounding the negatively chargedyg 054 042 053 062 059 051 050
solute have hlghef peak \_/alues and are less dispersed. Fug—y 028 025 033 042 040 032 028
ther, the coordination deviates the least from perfect octahe-
dral symmetry as discussed below. Tge — 0.5 solute is  roy 2.3 2.8 3.0 3.2 3.1 2.9 2.6
tetrahedrally coordinatefsee Fig. @)]. One may note that d,; 0.15 049 051 056 054 048 0.29
although the coordination of the water molecules changesa,, 015 046 051 057 054 048 0.28
from octahedral to tetrahedral apchanges from—1 to
—0.5, the most probable orientation of the water molecules'tt 2.3 2.5 28 3.0 3.0 2.8 2.5
remains unaffected; see Fig. 5. Ciet 0.45 0.36 050 0.61 0.58 0.48 0.44
The remaining solutes are surrounded by less well definedet ~ 046 036 050 063 059 048 044
water structures, at least in the selected coordinate system. &

ringlike maximum can be observed for te=0 and+0.2  \yherer; is the position of théth water molecule, and® is
solutes[see Fig. €c)]. Tendencies toward the same type of the position of theith vertex of a perfect octahedrom (
ring formation can also be observed for the=—0.3 and  =6) or tetrahedronr(=4). Note that the radius of the octa-
+ 0.5 solutes; however, the first solvation shell is COﬂSiderhedron(or tetrahedropis set equal to the average distance of
ably less structured. If the ringlike maximum indicates thatthe six (four) closest coordinated water molecules. This av-
the water molecules surrounding the solute form part of arage distance is also used as the length unit in Table II. The
relatively intact hydrogen-bond network; then it appears thaminimum is taken over the set of all possible rotatidds
either theq= —0.3 and+ 0.5 solutes disrupt the network to ~ We have also estimated the angular part of the deviation
some extent, or have a less well defined position within thérom perfect geometry. It was obtained by first projecting the
network. center of mass points of the six(four) closest coordinated
The above shows that the coordination of water moleculesvater molecules onto a unit sphere centered at the solute.
around theq=—1, —0.5, and+ 1 solutes possesses either Then the six(four) vertices of the octahedroftetrahedroh
octahedral or tetrahedral features. In order to estimate theere projected onto the same unit sphere. Finally, the dis-
degree of deviation from these two types of perfect symmetancesa between the projections of the center of mass points
tries, we have considere@) the deviations in the angles and the projections of the vertices were measured along great
a, B, andy indicated in Fig. 7; andb) how well rotation of ~ circles on the sphere, the root mean square distance was
a perfect octahedrofor tetrahedron can fit the center of calculated, and the minimum was taken over the set of all
mass points of the sixor four) closest coordinated water possible rotationgk; see Table II.
molecules. Clearly, the coordination shells surrounding the =1
Denote the angles obtained by joining two vertices of arsolutes deviate the least from octahedral symmetry. The
octahedron via its center by (see Fig. 7. For a perfect angle« deviates on the average 0.18 and 0.32 from the cor-
octahedrornx can be eitherr/2 or = depending on the pair responding values associated with perfect octahedral symme-
of vertices joined. In order to estimate the degree of octahetry. Rotational fitting of an octahedron to the coordination
dral symmetry in the first hydration shell, we have consid-shell also gives the smallest deviationsdg,, and a for
ered the angles formed between the mass centers of the watbese solutes. The coordination shell surrounding the
molecules in the first hydration shell via the solute. The root= — 0.5 solute deviates the least from tetrahedral symmetry
mean square diviatiom\e, of these angles fromr and /2  as measured by the anglgsand y and the parameteithg;
has been estimated. Analogously and Ay (see Fig. 7 anday;. The coordination shells surrounding the other sol-
have been used to estimate the degree of deviation from pemtes can neither be fitted to octahedral nor to tetrahedral
fect tetrahedral symmetry. The average valueaaf Apg, symmetry. Further, one may note thats close tod for all
andA y have been calculated from the simulation; see Tablesolutes, which reflects the fact that radial deformations of the
Il. coordination geometry are relatively small compared to an-
The second type of measure of the degree of deviatiogular deformations.
from perfect symmetry is defined by

IV. HYDROGEN-BOND ARRANGEMENT

n
d=min~\ /1 E (ri—r9)?, (6) In addition to studying the spatial arrangement of the wa-
ni=1

R ter molecules around the solute, we have studied how the
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(a)

number of bonds

FIG. 8. The spatial distribution functiogoo(r) used to define ) 6_\/f/\/\__
the hydrogen bond. The surfaces enclose volumes defined by Ec

(7) with g.,=1.5. The volumes marked by grow slightly, but T
retain their shape, if is lowered to 1.

e i e s site v
topology of the hydrogen-bond network is affected by the r(A) r(A)
solute. More specifically, we have looked at how the number

and types of hydrogen bonds that a water molecule engages FIG. 9.' The average number_s of bonds that a water mo!ecme
. ; engages in as a function of the distamdeom the solute(a) Num
in depend on the distance from the solute. The methods useb%r of bonds donatedyy. (b) Number of bonds accepted, . (c)

to analy;e the network were .|ntro.duced In Re27-29, Total number of bonds,, divided by 2. The curves corresponding
and applied to water-acetonitrile mixtures in Rj&f0]. totheq=+1, +0.5, +0.2, 0, —0.3, —0.5, and— 1 solutes have

We _have ulsed the effective hydrogen-bond definition t%een displaced by 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 units, respec-
determine which pairs of water molecules are bonded. Th'ﬁvely.

definition is based on the spatial distribution function

Joo(r), and its properties were Fﬁsc_ussed in Res|. _For . The total number of hydrogen bonds among the water
the _prflsef“ purposes we n|1ay I\/|ew It %S ? ggomeglc gegn,'rholecules surrounding the solute, minus the total number of
tion; that Is, two water molecules are defined as bonde If‘1ydrogen-bonds in the pure water system are listed in Table
their positions and orientations satisfy certain condltlons1II One may note that the total number of hydrogen bonds

More .prgglsel_yr,] onef of the lmoleeg:lules "(;U.St Ea\’? Its OX};geQiecreases when a solute is inserted, except in the case of the
atom inside either of two volumaslocated in the vicinity of o g 2 for which it remains unchanged. The decrease is

the protons of the other molecule; see Fig. 8. The volumeg, . largest for thej= — 1.0 and— 0.5 solutes, for which the

[31] are defined by the relation number of bonds decreases by 4.6 and 2.7, respectively. A
significant part of the decrease in the total number of
V={r|goo(r)>gc}, (7) hydrogen-bonds is due to a loss of hydrogen bonds among
the water molecules in the first solvation shell; see Table lll.
whereg.=1. Depending on thg,. selected, the number of The contribution from water molecules outside the first sol-
bonded pairs of molecules changes. Previous investigationgtion shell is less than 2 for all solutes. One should however
[28] indicate thatg,=1 is a reasonable choice: The averagenote that the sign of the contribution varies: There is a net
number of hydrogen bonds is relatively insensitive todecrease in the number of hydrogen bonds of 1.7 forgthe
changes irg; around this value. = —1 solute, whereas there is a net increase of 1.5 for the
We will denote total number of hydrogen bonds that ag= +1 solute. Moreover, if one regards solutes that are sur-
water molecule is engaged in Iy, the number of accepted rounded by well defined hydration shelithat is theq=
protons byn,, and the number of donated protonstyy.  —1, —0.5, and+1 solute$ as bonded to the water mol-

Trivially the relationn;=n,+ngy holds. The number of pro- ecules in the first hydration shell, then the total number of
tons donatedny, can take the values 0, 1, or 2, angcan

take the values O, 1, 2, or 3. We will label the different  taBLE 11l The change in the number of hydrogen bonds
hydrogen-bond configurationsf a water molecule byyn, among the water molecules due to the insertion of the soldtes.
and the probability to find a water molecule in a certaindenotes the total number of hydrogen bonds among the water mol-
configuration will be denotepndna. ecules surrounding the solute minus the total number of hydrogen
A natural starting point for the investigation of the bonds in the bulk simulatiomd; denotes the number of hydrogen
hydrogen_bond network is the dependence of the averad@nds among the water molecules in the first solvation shell minus
number of hydrogen bonds per water moleculg, on the the number of hydrogen bonds that the same number of water mol-
distance from the solute; see FigcP Close to the solute the gcules form in the bulk simulation. The estimated standard devia-
number of bonds decreases below 1.6, and at large distancli@'s are less than 0.3 fa¥,, and less than 0.03 fa;.
it tends towards the bulk value 3.338.0015. Between
these limits, the average number of bonds varies differentlyd
depending on the charge of the solute: for solutes with A, 46 -27 -18 -01 00 -02 -21
charges-1, —0.5, and+ 1 there are significant oscillations, A, -29 -17 -13 +01 -01 -13 -36
whereas variations are less pronounced for the other solutes

(¢ —-10 -05 -03 0.0 02 +05 +1.0
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TABLE IV. The average number of bonds,, the average 1.7 for negatively charged solutes and ranges from 1.5 to 0.5
number of bonds accepted,, and the average number of bonds for positively charged solutes.

donated,ng, for water molecules in the first hydration shell at a  |n pylk water,n, andny are both equal to about 1.7. The
distancer from the soluteq denotes the charge of the solute. The four water molecules in the vicinity of thg=+0.5 solute

estimated standard deviation is less than half a unit in the IaStdig"haven = 1.0, which indicates that together they have lost
a~ +Y%

about three hydrogen bonds. Previous considerations of the
a(e) r(A) n, Na Ny : : -
spatial arrangement of the water molecules in the vicinity of
-1.0 2.3 2.4 1.6 0.7 this solute gave that the solute acts as a double proton donor
-0.5 2.4 2.5 1.7 0.9 (see Sec. Il Thus the system regains about two of the three
-0.3 2.6 2.6 1.7 1.0 hydrogen bonds lost. Analogously, the system regains about
0.0 3.0 3.3 1.7 1.7 two of the three hydrogen bonds lost among the water mol-
+0.2 29 3.2 15 1.7 ecules surrounding thg= — 0.3 solute.
+0.5 2.6 2.7 1.0 17 The dependence af, andngy on the distance from the
+1.0 2.5 21 0.5 1.6 solute are shown in Fig. 9. One can note thawvaries mod-

erately withr for the solutes witly=0. For the other solutes,
the variations imy are confined mainly to the first shell, the
bonds in these systems increases by 1.4, 1.3, and 3.9, respesception being thg= — 1 solute for which oscillations per-
tively. sist up to aboutr=6 A. The value ofn, depends more

A more detailed picture of the hydrogen-bond structure isstrongly on the distance from the solute than dogsThere
obtained by studying howy andn, vary. In the first solva- are pronounced oscillations beyond the first solvation shell
tion shell the water molecules can bond directly to the solutefor solutes of charge-1, —0.5, and+ 1. It is not clear to us
Naturally, this reducery or n, depending on the sign of the why n, fluctuates more thany for the g=+1 solute.
solute’s chargdsee Table IV. Further, one can expect this Further insight into the structure of the hydrogen-bond
effect to increase with the size of the chalgé, as is also  network has been obtained by considering the probabilities
observedny is about 1.7 for positively charged solutes andof the different hydrogen-bond configurations in the first and
about 0.9 for negatively charged solutes, wheregis about  second solvation shells; see Table V. When estimating these

TABLE V. The probabilities that water molecules in the first and second hydration shells have certain
hydrogen-bond configurations. The shells are defined by maxima in the radial distribution functions, see the
text. The charge of the solute is denoteddgnd the distance from the solute to the maximunrbyhe
probabilities for the different hydrogen-bond configurations are indicate@ by, whereny denotes the
number of hydrogen bonds that the water molecule participates in as a proton donng, taednumber of
hydrogen bonds that it participates in as an acceptor. For comparison, results are included for bulk water and
for shells withr =4.3 A. The probabilities for bulk water are also given. The estimated standard deviation is
less than three units in the last digit in all cases. It is also less than 20% in all cases except those marked by
a.

Configuration probability
ae rA)  poo P10 P20 Po1 P11 P21 Po2 P12 P22 Pos P13 P23

—-1.0 23 0.006 0.013 0.000 0.108 0.27 0.000 0.137 0.44 0.000 0.005 0.023 0.000
-0.5 24 0.003 0.012 0.000 0.062 0.27 0.5002.083 0.52 0.008 0.004 0.046 0.000

—-03 26 0.003 0.013 0.002 0.060 0.26 0.04 0.076 0.44 0.06 0.004 0.033 0.006
0.0 3.0 0.001 0.006 0.009 0.013 0.11 0.22 0.013 0.15 0.43 0.000 0.006 0.032
+0.2 29 0.001 0.008 0.015 0.015 0.13 0.31 0.007 0.10 0.39 0.000 0.003 0.016
+05 2.6 0.005 0.038 0.075 0.019 0.20 0.52 0.002 0.030 0.11 0.000 0.00020.002
+1.0 25 0.025 0.178 0.319 0.013 0.13 0.32 0.000 0.003 0.008 0.000 0.000 0.000

—-1.0 4.2 0.000 0.005 0.010 0.008 0.089 0.21 0.013 0.15 045 0.001 0.012 0.053
-05 43 0.001 0.005 0.010 0.013 0.101 0.22 0.013 0.15 0.45 0.000 0.007 0.035

0.0 48 0.001 0.006 0.010 0.013 0.11 0.22 0.013 0.15 0.44 0.000 0.008 0.038
+0.2 48 0.001 0.006 0.011 0.012 0.10 0.21 0.013 0.15 0.44 0.000 0.008 0.039
+1.0 4.6 0.001 0.005 0.007 0.013 0.097 0.19 0.017 0.17 0.44 0.001 0.011 0.046

-03 43 0.001 0.006 0.010 0.013 0.11 0.22 0.014 0.15 0.44 0.000 0.007 0.036

0.0 43 0.001 0.005 0.010 0.012 0.10 0.22 0.013 0.15 0.44 0.000 0.008 0.038
+0.2 4.3 0.001 0.005 0.010 0.012 0.097 0.21 0.013 0.15 045 0.000 0.007 0.039
+05 43 0.001 0.005 0.010 0.011 0.099 0.21 0.014 0.15 0.45 0.000 0.009 0.041

bulk 0.001 0.006 0.011 0.014 0.107 0.22 0.014 0.15 043 0.000 0.008 0.036

&The estimated standard deviation is less than 25%.
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FIG. 10. The probabilitiespndna describing the fraction of water molecules in different hydrogen-bond configurations are plotted as
functions of the distancebetween the solute and the water molecule. The curves are markgd hywhereny andn, denote the number
of hydrogen bonds donated and accepted, respectively. Note that the lower-probability hydrogen-bond configurations have been omitted.

probabilities, the solvation shells have been defined as thend solvation shells of thg=—1, —0.5, and+1 solutes
0.25-A-thick spherical shells centered on the maxima of thecoincide with maxima im, andn,; see Fig. 9. Some of the
solute-oxygen radial distribution functiofisompare Fig. 2 probabilitiespndna also take extreme values in these shells;
In the first solvation shell, the 12 configuratié¢that is,  see Fig. 10.
ng=1 andn,=2) is the most probable for solutes with  since the q=-0.3 and +0.5 solutes correspond to
q<0, whereas the 21 configuration is the most probable fomaxima in the solvation entropy, and since they are associ-
solutes withq>0.2. Further, the 11 configuration is the sec- ated with the disappearance of the second maxinggr),
ond most probable configuration for solutes witi}>0.2.  one might expect the hydrogen-bond network surrounding
Considering theq=+0.5 and—0.3 solutes, we may note these molecules to be perturbed in some seiesenpare
that the former corresponds to a maximumpiy, and the  Lynden-Bell and Rasaiaf#]). Further, if such perturbations
latter has a relatively high value @f;,. prevail, then it is reasonable to expect traces of them to be
The first solvation shell surrounding thie= 0 solute has a visible in the probability distributions describing the fre-
bond structure resembling that of bulk water. The differentquency with which the various hydrogen-bond configura-
hydrogen-bond configurations of the water molecules in thigions occur. The probability distributions of the water mol-
shell all have probabilitie,, comparable to those of the ecules atr=4.3 A distance from the solute are given in
same configurations in bulk water. In particular, one mayTable V. The differences are small between the distributions
note thatp,, is equal to 0.43, which is the same as in bulk describing the hydrogen-bond configurations surrounding, on
water. The first solvation shell surrounding tipe +0.2 sol-  the one hand, thg=0 and+ 0.2 solutes and, on the other
ute has a bond structure that differ significantly from that ofhand, theq=—0.3 and+ 0.5 solutes. Further, all configura-
bulk water. Nevertheless, these differences are small in contions occur roughly as frequently as in bulk water. Also at
parison with the differences in the configuration probabilitiesdistances larger than=4.3 A from these four solutes, the
induced by the more highly charged solutes. situation closely resembles that of bulk wateompare Figs.
Turning to theq=—0.3 and the+0.5 solutes, we note 9 and 10. Thus the disappearance of the second maximum in
that the probability of the 22 configuration is reduced fromgsg(r) for theq=—0.3 and+ 0.5 solutes does not appear to
the bulk value of 0.43 to 0.06 and 0.11 for the —0.3 and  be associated with any major change in the topology of the
+0.5 solutes, respectively. On the other hand, the probabilhydrogen-bond network outside the first hydration shell.
ity of the 12 configuration is enhanced for the- — 0.3 sol-
ute, and the probability of the 21 configuration is enhanced V. SOLVATION ENTROPY
for the q= +0.5 solute. Further, about two of the four water

molecules in the first hydration shell of these solutes coordi—f th Wati ruct di Ut f diff i
nate tetrahedrally to the solute. Thus, in addition to the pp! e solvation structures surrounding solutes of ditteren

coordinated water molecules, there is a number of water mof-:hf‘r:ges'lwf havte b(taen partlcular(ljy mter;as:[ted n dlffereré(_:es
ecules that are coordinated in a “22-like” manner. In the solvation structures surrounding solutes corresponding

Theq=—1, —0.5, 0, +0.2, and+1 solutes all exhibit to extrema in the solvation entropy. In order to clarify the

second solvation shells in terms of a second maximum irqelatlon between the solvation structure and the solvation

gso(r). For the water molecules in these shells, the differenf T]bt“;.py’ ;/vg[hhavelcal_culatett:i the Sg Il:te—watefr tv;/c()j-t}pdy tﬁpn'
hydrogen-bond configurations occur with frequencies similatrI ub'og 0 Et3 %0 ;{a 1on (Zlntrrlopy. elow \{\(lje Irtf1 e melzt ]!s
to those in bulk water. However, there are some differences. o cocy CONtbution and then we consider the results for
the 23 configuration has a higher probability in these shelléjlfferent solu';es. ,

than in bulk water(except for theq= —0.5 solute. More- The solvation entropy can be defined as
over, for theq=+1 solute, the probabilities of the 12, 13, AS=Snixure— Swater— Ssoluter (8)
and 22 configurations are also enhanced, and, forcthe

=—1 solute, the probabilities of the 13 and 22 configura-whereS,;denotes the entropy of a single solute in an ideal

tions are enhanced. Further, the density maxima of the segas phaseS, . the entropy of the pure water system, and

So far, we have compared spatial and topological aspects
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Shixture the entropy of the mixture. In the canonical ensemblefor which the converse is true. In this sense one may thus say
each of these terms is given by an expression of the type that theq=0 and+0.2 solutes enhance the water structure,
whereas the other solutes disrupt it. Moreover, as the solute’s

k charge(that is|q|) increases, the difference betwegf) and

S=- N'hsj p(p.a)In p(p,q)dpdg, (9 AS becomes larger. The solute-water correlations thus in-

' crease, whereas the water-water correlations decrease. One

whereN is the number of particleor moleculey s is the ~ May also note thak Sis negative for al, which is expected

number of degrees of freedom of the systén the Planck ~ considering excluded volume effects.

constant, and is the Boltzmann constant. The system’s ki- 1€ two-body contribution tozthe solvation entropy can be

netic and configurational degrees of freedom are denoted b§eparated into an orientationg{?), and a radial or nonori-

p andq, respectively, ang(p,q) is the N-particle distribu-  €ntational parS{), by writing g{8) as a product,

tion function. Integral(9) above can be solved analytically 2)_

for the solute term, giving 9sw=9(r)a(r,6,4), (13

3 of the radial distribution functiong(r) and a function
Scolute™ k(z—ln(pszﬁ)), (10 a(r,0,$) describing the orientation of the water molecules
[18,32. The angles® and ¢ are defined in Fig. 4. Inserting

wherep, is the number density of the solute andis the de  this factorization ofgl;) into expressior(12a for S5, we
Broglie wavelength. The integral can however not be solvedus obtain

analytically for the water and mixture terms; but, using a
Kirkwood-type factorizatiorf16] of the N-particle distribu-

tion function, one can rewrit§, ie; aNd Spixture &S SUMS OVEr  \where
the partialn-body distribution function$17,32. Doing this,

one obtains the following expansion of the solvation entropy,

S =S+ S » (14

S /KN,,= —pSJ ‘dr 47rr2g(r)ing(r)
’ 0

AS=S@)+AS2+S3) +ASE, + -, (1)
where —pSJO dr4ar3(g(r)—1) (15)
2=~ kNupoe f 9@In g&dr + KNy f @@-1dr  and
(123) ) o 5 1 (7 (27
and st,o/kNW:_psfo dr4ar g(r)Efo fo
xXd#sinfddga(r,0,¢p)Ina(r,6,¢). (16)
p
S(,\,z‘,?,z—kNW%f 9@Ing{2) dr dw _ , .
The radial partS%),, would hence be equal t8%) if the
P solvent lacked orientational degrees of freedom. Further,
+kNWmf ( svzv)v— 1)dr dw. (12b provided that the solute did not induce any orientational or-

der among the water molecules, thes 1 andS%), would

Above, p denotes the number density of the solyig,the b(ez?ome maximal that '5(2")[ would become zero and again
number density of the water moleculegévz\,)v the two-body Sewr Would be equal taSg,/ . The r_adlal_ and orientational
water-water distribution function, and) the two-body Parts of the two-body entropy are given in Table V1. One can
solute-water distribution function. Further,is the position note th‘f’lt the orientational part.varles approximately parapo!|—
of a molecule,w is the Euler angles describing its orienta- cglly with g, whereas the rad@l part has th_e charqcterlstlc
tion, andQ) is 872 N, is the number of water molecules bimodal form of the full solvation entropy with maxima at
(that is 255 in our simulationsandk is Boltzmann’s con- =—03 and J(rz?s Furt.her, for all excgpt thq=0 and
stant. The second term in expansitit) is the difference +0-2 SolutesS, is dominated by the orientational part.
betweens(,vz‘,?, obtained from the mixture and the pure water One ca2n _break doyvn t_he or|entat|_onal and radl_al contribu-
system, respectively. This difference need not tend to zero dNS toS(§W) into contributions from dlffgrent spherical shells
N,, tends to infinity. In fact, the following will show that itis Surrounding the solute. The orientational part can, for ex-
reasonable to expect it to be of the same order of magnitud@Pl€, be viewed as a sum of contributions,
asS?) (cf. Ref.[33]). We have calculate8) from our MD 1 (2
simulations. The other terms in E¢L1) were inaccessible ds= —der47-;ng(r)—f f
because of the computational resources required. 4mJo Jo

The full solvation entropy varies bimodally with, in
contrast toS{2) which has a single maximum at=0; see
Fig. 1. The difference betweekS andS{) is due toAS{Z),  from shells of thicknessir. In this expressiordS may be
and other higher order terms in the expangibh). Further, viewed as entropy due to the orientational freedom of a water
Sgﬁ,) is less tham\ S for all except theg=0 and+ 0.2 solutes, molecule at distance multiplied by the average number of

xXd#sinddgpa(r,o,¢)lna(r,6,¢), 17)
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TABLE VI. Different contributions to the solvation entropy in units of Boltzmann’s conskarg(),
denotes the radiaB®), the orientational, an@() the total two-body solute-water solvation entroygr
denotes the solvation entropy read from Fig. 5 in Ré&f. Sz, denotes the solvation entropy obtained from
our expanded ensemble simulation. We haveSggt equal toS,gr atq=0; see Sec. 1ISZ),SE), , andsS{Z),

have been corrected for the systematical error due to noise; see Sec. V. The standard de&gtiomas
been estimated by partitioning the simulation in ten parts.

a(e)

-1.0 -05 -0.3 0.0 +0.2 +0.5 +1.0
S@), -12.8 —4.4 -2.0 -3.2 -2.9 -2.9 -75
s@), -30.7 -11.6 —-4.4 -3.0 -3.3 -4.3 -12.0
s2) —43.6 -16.0 -6.4 -6.1 -6.3 -7.2 -195
Sier -28 -8 -2 -7 -8 -5 -10
SgLL -327+1.9 -11.4+14 -58+10 -7 —9.0+08 -7.2+11 —143+1.1
Sigr—S@) +15.6 +8.0 +4.4 -0.9 -1.7 +2.2 +9.5
Sgu—S& +10.9 +4.6 +0.6 -0.9 -2.7 -0.0 +5.2

water molecules at this distance. However, it is not clear tgoise in our estimate of the distribution functigg\) gives

us what the analogous decomposition of the radial parfise to a systematical error and a statistical error. These er-
would mean: There are different contributions from different;grs were estimated by partitioning the simulation time in
shells to integral(15), but it is meaningless to say that a jntervals of different length (180.2, 5x0.4, and 1
region of high density contributes more or less to the entropy, » ns). For each of these intervad§) was calculated via
than a region of low density. The existence of one presuqu_ (123. The mean value and the standard deviatiosgﬁ;)n
poses the existence of the other. For the same reasons, b e then estimated for each partition. The systematical error
appears better to speak about the orientational entropy relgg e 14 the noise was estimated as the difference between the
tive to the solute associated with one water molecule in 3hean value of the entropy obtained from the G.4-ns par-
certain solvation shell, than about the total orientational CONition and the entropy obtained fromxI2-ns par.tition(see
tribution from a certain shell, since the latter will be depen—.l.able VIII). We expect this estimate to provide an upper

dent on the local density of water molecules in dIﬁerentbound of the systematical error due to the noise. The statis-

shells. The orientational entropies of water molecules in th‘?ical error was estimated using the standard deviation ob-

first and second solvation shells, and in a spherical shell with_. ) o
(=43 A are listed in Table VII. tPauned for the 5<0.4-ns partition(see Table VIIJ.

| der t timate th . determinai Moreover, in order to evaluate the integrals in EtRa),
(z)n order to estimate e accuracy In our getermination Ofthe solute-water configuration space was partitioned into vol-
Sqw » several sources of error must be considered. First, thg

mesdV. We have used two different partitions in order to

TABLE VII. ContributionsdSto the orientational entropy from estimate the error due to the fact dggj, is not constant on

spherical shells of different radiicentered on the solute. The shells the dV. The first partition has
are 0.3 A thick. The radii have been selected so that the shells
coincide with the maxima of the first and second solvation shells
(cf. Fig. 2. The shells ar=4.3 A were also consideredS is wheredr=0.2, dcos¢=2/30, andd¢= /30, and the sec-
defined by Eq(17) anddS,,c=dS/n, wheren is the average num- o+ o paylrtition hasjr’zo.l dc030=2,/60 and d¢
ber of water molecules in the shell. The entropy is in units 0f=77}60 Tf,Ie difference between, the results (;btained using
Boltzmann’s constari and the radii are in A. The statistical errors h ' - fth fi fi is listed in Tabl
are less than 1% in first solvation shells and less than 4% in th e two partl'glons of the configura .|0n §pace IS I.S edin 1able
other. lll. We estimate that 0.2k of this difference is due the
different systematical errors caused by the noise, and the rest
q(e) is due to the difference in resolution between the partitions.

-10 -05 -03 00 +02 +05 +1.0

dV=drxdcosfxdg, (18

TABLE VIII. Different errors inS{2) in units ofk. The statistical

r 2.3 2.4 2.6 3.0 2.9 2.6 2.5 and systematical errors due to noiseg@ are denote@, yise, sa@Nd

dS -202 -6.90 —2.27 —055 —0.78 —1.25 —5.73  Snaise,syst [€SpPectively. The difference betwe&) as calculated
dSn —3.90 —2.88 —1.45 —0.27 —0.43 —0.82 —159 Usingthe finer and the grosser partition of the solute-water configu-
ration space is denoted §eqq syst

r 42 43 48 48 4.6

ds  -1.18 -0.18 —~0.07 —0.07 ~0.56 a(e)

dSye -—0.31 —0.06 —~0.03 —0.03 -0.16 -10 -05 -03 00 +02 +05 +1.0
r 43 43 43 43 43 43 43 Sgesam 005 003 004 005 005 002 0.09
dS  -135 -0.18 —0.13 —0.19 —0.17 —0.09 —024 Sypeess 024 024 024 024 024 024 024

dSpe —0.33 —0.06 —0.05 —0.10 —0.08 —0.04 —0.09  Sesusst 140 064 034 026 027 032 0.63
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(in units of k)
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sw
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FIG. 11. The two-body solute-water contributi@éﬁ} to the solvation entropy. The integrals in E429 have been carried out over

spheres of radii centered on the solute. The dashed curves have been obtained using the local form of the solvatiofi.enthmtly terms

in Eqg. (129] and the solid curves have been obtained using the nonlocal [ioem the first term in Eq(12a]. Note that the curves
corresponding to thg=+0.2, +0.0, and— 0.3 solutes have been displaced Wy, 3k, and %k, respectively.

We assume that the error due to the finite resolution of theolute; see Table IX. More precisely, we have only consid-
finer partition is less than the difference between the resultered water molecules that spend at least 2 ps inside a given
obtained from the fingr and grosser pa_rtitiO_nS, re_SpeCtivelysphere when calculating the averages. The average lifetime
The error caused by insufficient resolution is mainly due todoes not include the 2-ps-long time period necessary for the
the fine structure in the first hydration shell, and it ianease$n0|ecu|e to be considered. This definition has the ad\/antage
with |g| since the more highly charged solutes are morgnat only water molecules that have properly entered a given
strongly correlated with the surrounding water molecules. sphere will be considered when estimating the average time.
Considering the different errors in Table VIIl, we con- nglecules at the boundary that have rapidly in and out of the
clude that the statistical error due to the noise is less thanhere are thus not considered. In the following we will
0.1 k for all solutes. The systematical error due to the NOISE sethe termlifetime for the average time spent inside a
decreases the solvation entropy by about R.Znot more
than 0.24k). The error due to the finite resolution of the

finer partition depends on the solute’s charge: it ranges from | /ELE IX. The average t'méi'ngs) spent by a water molecule
about 1.2k for the g=—1 solute to about 0.06& for the inside spheres of different radiin A) centered on the solute;

denotes the radius of a sphere enclosing on the avedragmer
uncharged solute. p g agp

. - . molecules.r; denotes the average time that water molecules spend
One should also consider the possibility that the reIatl\/e'yinside this sphere; see the text for an exact definition. The estimated

sm?ll v;)ItL;]me Olf O,:“.'r Slmlilat'on \?Ve” rr]nay Influlenctedoghr e_st;— standard deviation is less than two units in the last digit in all cases
mate of the solvation entropy. VVe have evaluate e eéxcept where other is indicateg denotes the charge of the solute.
grals in Eq.(129 over the full simulation cell. This would be

necessary if the nonlocal form of the solvation entr¢g#| q(e)

was used, and it is still preferable when using the local form ~10 -05 -03 00 402 +05 +10
of the solvation entropy17] as we have. The reason that it is

preferable is that contributions to the integrals in EtRg My 2.4 3.0 32 33 33 3.1 2.6
decay relatively slowly with the distance from the solute. In rg 35 3.8 36 35 35 3.5 3.4
Fig. 11 the integrals in Eq(12g have been evaluated for r, 4.9 5.2 53 54 54 5.3 5.1
spheres of increasing radiuscentered on the solute. It is rg, 5.9 6.1 61 61 6.1 6.1 6.0

clear that the local form of the solvation entropy converges

faster than the nonlocal form. At=L/2 the local form de- T4 -2 9.6 3.6 4.2 4.0 4.0 21

. . . b
viates less than 0.R from the value obtained when the in- 76 41 65 41 48 46 48 19
tegral is evaluated over the full volume. 0 17 10 66 71 70 76 12
T3o 14 11 7.5 7.9 7.7 8.5 13

VI. LIFETIMES

#The exchange is so slow that we cannot estimate the lifetime in this
We have calculated the average timehat water mol- case.
ecules spend inside spheres of different radii centered on tH&he estimated standard deviation is 4 in this case.
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sphere of a given radius. enhanced by these solutes. For the more highly charged sol-
Looking at Table IX, one may first note that the more utes the converse is observed, thatSlg) is less thanS
highly charged solutes contract the water structure surroundyhich indicates that the water-water correlations are reduced.
ing them. Thus the radius of a Sphere Containing a fixed The top0|ogy of the hydrogen_bond network in the first
number of water molecules decreases as the magnitude of tgyation shell differs from that of pure water for all solutes
charge increases. Further, there is a general trend for thg,gied, although the differences are small for gie0 sol-
lifetimes to increase with the magnitude of the solute’s Beyond the first solvation shell, the topology of the

charge, which is equivalent toa slow down Of. the exChang‘?]ydrogen-bond network closely resembles that of bulk water
of water molecules surrounding the solute with water mol-

) . for the solutes with charges 0.3, 0, +0.2, and+0.5. In
ecules in the bulk. The=—0.3 solute provides an excep- articular, one may note that outside the first solvation shell
tion: it is associated with shorter lifetimes than both the b ' Y

— 0.5 and 0 solutes. As the= 0.3 solute is associated we find no significant differences between the topology of
with a maximum in the solvation entropy, this is perhaps nollhg hydrlogen-bong netwohrk Zurrogndln% tq:—g.g anld
unexpected. Thel=+0.5 solute is also associated with a *+0.5 solutes on the one hand, an _the and+0.2 sol-
maximum in the solvation entropy, but in this case we ob-utes on the cher hand. The remaining more highly charged
serve no minimum in the lifetimes. However, for the smallerSolutes(that is, theq=*1 and +0.5 solutes also perturb
spheresi(, andrg) one may note that the lifetimes are com- the topology outside the first solvation shell. Nevertheless,
parable to those obtained for the=0 and+ 0.2 solutes. the change in the number of hydrogen bonds among the wa-
The gq=+1 solutes are surrounded by well defined octa-ter molecules outside the first solvation shell is less than two
hedral solvation shells, and theg= —0.5 solute by a well for all of the solutes studied. Thee=—0.3 and+ 0.5 solutes
defined tetrahedral solvation shell; see Fig. 6. The averag@® thus not structure breakers in the sense that they reduce
times spent inside spheres of radjj and rg reflect how the number of bonds among the surrounding water molecules
strongly the solute bonds the water molecules in these solvdnore than the other solutes.
tion shells. Theg= — 1 solute bonds the water molecules the ~ 1he maxima in the solvation entropy correspond to sol-
strongest, thej= + 1 solute the second strongest, and ¢he utes that “fit” into the hydrogen-bond network in the sense
— —0.5 solute the weakest. One may also note thais that they can replace a water molecule and act either as a
significantly smaller tham, for theq= — 0.5 solute, whereas double proton donor or as a double proton acceptor; that is,
they are almost equal for thee=+ 1 solute. This reflects the these solutes coordinate tetrahedrally relative to two of the

fact that the former of these solutes is tetrahedrally coordifOU" water molecules in the first hydration shell. Relative to
nated, whereas the latter is octahedrally coordinated. the two remaining water molecules, the solutes coordinate in

interstitial (that is nontetrahedralpositions. The fact that
these solutes can coordinate in two different ways to each
water molecule indicates that they have access to a relatively

We have begun our analysis by considering how closelyarge set of locations within the hydrogen-bond network.
our simulation conditions can be thought to mimic infinite Separation osgﬁv) into an orientational part and a radial part
dilution. The electric field in the simple cubic Wigner solid shows that the orientational part has a single maximum at
used in the simulations was found to be sufficiently similarqg=0, whereas the radial part has the characteristic bimodal
to that surrounding an isolated point charge. By sufficientlyform of the full solvation entropy with maxima at0.3 and
similar we mean that one can expect the hydration structures 0.5. The water molecules’ mass centers are thus less cor-
surrounding solutes at infinite dilution to agree well with related with theq=—0.3 and+0.5 solutes than with the
those obtained from our simulations. The agreement betweesthers, which is consistent with the notion that these solutes
our results and those obtained by Lynden-Bell and Rasaiahave access to a relatively large set of locations within the
[4] for a smaller fcc system also supports this conclusion. hydrogen-bond network.

When an ion is inserted into water, it disrupts the We have characterized the hydration structures surround-
hydrogen-bond network in its vicinity and creates one oring solutes that, in the sense of their solvation entropy, cor-
several coordination shells. This is what we have observegespond to the extremes of structure making and structure
for theq=—1, —0.5, and+1 solutes. Insertion of a noble breaking. By comparing these different hydration structures,
gas atom, on the other hand, is not thought to disrupt, buive have attempted to provide insight into how simple solutes
rather to enhance the water-water correlations. We have casuch as noble gas atoms and monovalent atomic ions perturb
culated the solute-water two-body contributisﬁ;v) as well  the spatial and topological structures of water. In particular,
as the solvation entrop$. The two-body contribution is since we have compared the extremes, we hope that our re-
larger than the solvation entropy for tqe=0 and-+0.2 sol-  sults place an upper bound on the size of the perturbations
utes, which indicates that the water-water correlations arghat one can expect.

VII. CONCLUSION
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